Breast Cancer Surgery: Comparing Surgical Groups and Determining Individual Differences in Postoperative Sexuality and Body Change Stress

Debora Yurek, William Farrar, and Barbara L. Andersen
Ohio State University

Women diagnosed and surgically treated for regional breast cancer (N = 190) were studied to determine the sexual and body change sequelae for women receiving modified radical mastectomy (MRM) with breast reconstruction in comparison with the sequelae for women receiving breast-conserving therapy (BCT) or MRM without breast reconstruction. The sexuality pattern for women receiving reconstructive surgery was one that was significantly different—with lower rates of activity and fewer signs of sexual responsiveness—than that for women in either of the other groups. Significantly higher levels of traumatic stress and situational distress regarding the breast changes were reported by the women receiving an MRM in contrast to the women treated with BCT. Using a model to predict sexual morbidity, regression analyses revealed that individual differences in sexual self-schema were related to both sexual and body change stress outcomes.

More than 180,000 women are diagnosed with breast cancer each year, and it is estimated that 1 in 9 will develop the disease by age 85 (American Cancer Society [ACS], 2000). Surgery is usually the initial treatment for invasive breast cancer. Surgical options include breast-conserving therapy (BCT; often called lumpectomy) and axillary node dissection or a modified radical mastectomy (MRM), which includes removal of all breast tissue as well as the axillary lymph nodes. Not all women receiving an MRM are eligible for breast reconstruction (i.e., tissue expander with a permanent implant, autologous tissue transfer, or a permanent implant), but those who are may elect to receive it at the time of mastectomy. Still, other women may elect to have a bilateral mastectomy (removal of the breast with the tumor as well as removal of the other, disease-free breast). Even though this is rare, women who request such extended surgery are typically those women with a strong familial history (i.e., a first-degree relative, a mother, died of the disease at a young age), who are young when diagnosed (e.g., <45 years old), and who actively want to reduce their risk of recurrence, as the remaining breast is the most common site for disease progression (Harris, Morrow, & Bonadonna, 1993).

Clinical psychologists juxtapose these medical facts about breast cancer with concern about the psychological and behavioral sequelae of the disease. Since the earliest research on the psychological aspects of cancer, breast cancer surgery has been viewed as difficult and, in some sense, traumatic. Although cancer, per se, can be a devastating illness, disease in the breast was regarded as an especially difficult insult (e.g., Bard & Sutherland, 1955; Reneker & Cutler, 1952). Implicit was the notion that a woman (and perhaps her sexual partner) would see herself as a "changed" person following mastectomy. For example, in 1980, Derogatis offered a framework for two primary and "integrally related" (p. 2) components of sexual self-identity—sexuality and body image—as being directly affected by diagnosis and treatment.

Debora Yurek and Barbara L. Andersen, Department of Psychology, Ohio State University; William Farrar, Department of Surgery, Ohio State University.
Debora Yurek is now at Malstrom Air Force Base, Grand Forks, North Dakota.

The Stress and Immunity Breast Cancer Project is an ongoing study conducted at the Department of Psychology and the James Cancer Hospital and Research Institute, Ohio State University. The study was supported by a grant from the American Cancer Society (PBR-89), the Longaberger Company—American Cancer Society Grant for Breast Cancer Research (PBR-89A), U.S. Army Medical Research Acquisition Activity Grants (DAMD17-94-J-1665 and DAMD17-96-J-6294), and a grant from the National Institute of Mental Health (1 RO1: MH51487). This research was also supported in part by a grant from the General Clinical Research Center (M01-RR0034); the Ohio State University Comprehensive Cancer Center Core Grant from the National Cancer Institute (P30 CA16058); and the Department of Psychology and the College of Social and Behavioral Sciences, Ohio State University.

These data were in partial fulfillment of the dissertation requirements for Debora Yurek.

We thank the study participants for their time and assistance. In addition, we acknowledge the following individuals for their contributions: research/graduate assistants Susan Aarestad, Elizabeth Street Bromet, Nicole Chaput, Angela Collier, Larisa Demyshuk, Melissa Douglas, Sarah Grimes, Katheryn Pingel, Jessica Walker, and Laura Wielonis and nurses Beth Putz and Jan Varga-Spangler for conducting the psychological/nursing assessments; surgical oncologists William Burak, William Carson, Julian Kim, Gregory LaValle, Deborah Martinez, Michael Walker, and Lisa Yee and medical oncologists Kelly Cawley, Chris Rhoades, Arthur Sagone, Victoria Seewalt, Michael Stanek, and James Ungerleider for accrual; Mary Elizabeth Courtney for data management and Deanna Golden-Kreutz, Vicki DiIlillo, and Laura Peterson for project management; Georita Frierson for statistical assistance; and Jill Cyratowski, Steven Beck, Mark Elliot, Charles Emery, and Robert McCullum for helpful comments on an earlier version of this article.

Correspondence concerning this article should be addressed to Barbara L. Andersen, Department of Psychology, 1885 Neil Avenue, Ohio State University, Columbus, Ohio 43210-1222. Electronic mail may be sent to andersen.1@osu.edu.
of breast cancer. Contemporary reviews highlight the importance of sexuality for cancer survivors. As Gotay and Muraoaka (1998) noted, "the aspects of QoL [quality of life] that pose the most difficulty for survivors are likely to vary by cancer site, but this literature strongly implies that sexual functioning and/or satisfaction is a common issue for many survivors, regardless of diagnosis or treatment" (p. 664).

Conclusions such as the latter are familiar (e.g., Andersen, 1985), even though the methodologies for this research have been, at times, modest. Specifically, sexuality and body image constructs have been ill defined and operationalized and difficult to assess as separate constructs (e.g., questionnaire items such as "I feel sexually attractive" are viewed as assessing both domains). Even so, a meta-analysis of psychosocial outcomes of breast cancer surgery separated the constructs and reported consistent psychologic advantages of lumpectomy (i.e., breast-conserving surgery) in contrast to mastectomy for body image and, to a lesser but still significant extent, for marital/sexual adjustment (Moyer, 1997). In fact, Moyer (1997) concluded that "the largest and most robust effect size, showing benefits for breast conserving surgery for body/self-image, is already a firmly established finding" (p. 290).

For those women who receive mastectomy, by choice or necessity, reconstructive surgery may be included. Because some types of reconstruction at the time of mastectomy may add additional cost and surgical morbidity (i.e., slower wound healing, extra days in hospital, and added blood loss as well as anesthesia), research is needed to determine the benefit added. A certain motivation of reconstruction is for "better" quality of life outcomes than with MRM alone. Thus, the first goal of the present research was to examine the postoperative sexual and body image sequelae for women receiving MRM with immediate reconstruction (MRMw/R). Their responses were compared with the differential responses of the most studied surgical groups—women receiving either BCT or MRM only.

Related to this goal was our strategy to examine a broader conceptualization of the emotional distress and potential trauma surrounding breast changes. We included three convergent yet nonoverlapping domains for assessment. First, the previous decades of research had included a measure of "body image." Although body image can be conceptualized in many ways, it is body satisfaction that has been frequently examined (e.g., Muth & Cash, 1997); thus, a standard measure of body satisfaction (Berscheid, Walster, & Bohnsneid, 1973) was included. Second, women receiving more extensive breast surgery report situational distress when their body is (or potentially might be) exposed; this distress may be greatest when a woman is with a sexual partner but may also occur when she is alone (e.g., standing and dressing in front of a mirror; Beckmann, Johannsen, & Blichert-Toft, 1983; Kemeny, Wellisch, & Schain, 1988; Margolits, Goodman, & Rubin, 1990; Noguchi et al., 1993). Thus, we generated examples of situational stressors for the content of items. Third, intrusive thinking and avoidance are two important dimensions of the subjective stress response to traumatic stressors, and individuals who report involuntary, distress-related ruminations following traumatic life events are also those who suffer the greatest negative effects. This is true for war veterans or rape victims (Keane & Wolfe, 1990; Roszell, McFall, & Malas, 1991), as well as breast cancer patients when they are assessed regarding their intrusive thoughts of cancer treatment or their avoidance of reminders of their disease (Cordova et al., 1995). Thus, we assessed traumatic stress—intrusive thoughts and avoidant behaviors—related to the breast changes. The three domains—traumatic stress, situational distress, and body satisfaction—were used to assess differential levels and opposing valences (i.e., positive body satisfaction vs. negative subjective stress) of reactions to the body changes brought with the three types of breast cancer surgery (BCT, MRMw/R, and MRM).

In addition to describing the disease and/or treatment factors correlated with sexual and body image outcomes, our research has tested theoretical models for the prediction of psychological/behavioral morbidity (e.g., Andersen, 1994; Andersen, Woods, & Copeland, 1997) and disease course (Andersen, Kiccok-Glaser, & Glaser, 1994; Andersen et al., 1998). This research step is important for progress in quality of life research and for identification of women in greatest need for psychosocial care, and it is a step facilitated by the prior decades of psychological research (see Meyerowitz, 1980, as an example of an early review). It is also timely, as nearly 50% of women diagnosed with breast cancer will survive at least 15 years (ACS, 2000) and will, necessarily, "adjust" to surgical sequelae. Moreover, there is a current controversy surrounding the medical management of women identified to be at increased risk for the disease (Eisen & Weber, 1999) and the large numbers of women diagnosed with noninvasive breast tumors ("Stat Bite," 1998). Some of the latter women receive aggressive surgical management. For example, Hartmann et al. (1999) studied women with a well-defined family history of breast cancer who underwent a prophylactic bilateral mastectomy; their report, suggesting a reduction of at least 90% in both the incidence of breast cancer and risk of death from the disease, may well increase the frequency of women choosing such extensive surgical solutions to manage their risk for and fears about breast cancer.

For the prediction of psychological and behavioral morbidity surrounding sexual functioning, our model has included known correlates of sexuality for women (e.g., demographic factors, such as age; behavioral factors, such as previous frequency of sexual intercourse; and psychological factors, such as level of sexual satisfaction) and health/illness variables (e.g., menopausal status and extent of disease and treatment; Andersen, 1994), but these variables do not fully account for who does and who does not experience significant sexual morbidity (e.g., Andersen, Anderson, & deProsse, 1989a). Individual differences appear to be important as well.

The construct of sexual self-concept or sexual self-schema has been proposed (Andersen & Cyranowski, 1994; Andersen, Cyranowski, & Espindle, 1991) and tested (Andersen et al., 1997) as an important individual difference variable for sexual domains. Sexual self-schema is a novel, cognitive view about sexual aspects of oneself. It functions not only as a quick referent of one's sexual history but also as a point of origin for information—judgments, decisions, inferences, predictions, and behaviors—about the current and future sexual self. It regulates interpersonal sexual processes, but sexual schema also appears to mediate the interpersonal aspects of sexual relationships. Those who differ in the valence of their sexual self-views have very different sexual lives. Women with a positive sexual schema, for example, enter sexual relationships more willingly, have a more extensive behavioral repertoire, evidence more positive emotions when in sexual relationships, and anticipate having positive sexual relationships in the future. Also, the affects and behaviors indicative of loving, intimate attachments are central to women with a positive sexual schema (Cyranowski & Andersen, 1998). In contrast, women with a negative sexual
schema tend to describe themselves as emotionally cold or unromantic; further, they are behaviorally inhibited in their sexual and romantic relationships. They may describe themselves as self-conscious, embarrassed, or inexperienced in sexual matters. Importantly, our longitudinal data indicate that these are stable self-views, impervious, for example, to the passage of time or the waxing and waning of specific sexual or romantic relationships.

Thus, the second goal of this study was to test the contribution of sexual schema to women's postoperative sexual and body change outcomes. The test of the schema construct is framed within a conceptual model for predicting psychological and behavioral morbidity, which controls for important, prior history variables (e.g., prior frequency of intercourse and menopausal status) and disease/treatment factors (Andersen, 1994). We hypothesized that individual differences in sexual self-schema can function as a diathesis, and they can be important in predicting sexual morbidity and/or dysfunction following the onset of a sexually relevant stressor (see Cyranowski, Aurestal, & Andersen, 1999, for a full discussion). Support for this general hypothesis was found with gynecologic cancer survivors (N = 61; Andersen et al., 1997). When comparisons were made with an age-matched sample of women without cancer, the expected disruption in sexuality was found for the women with cancer, due in part to the effects of their radical surgery and/or radiotherapy to the pelvis and genitals (e.g., Andersen et al., 1989a). More relevant, however, was the finding that sexual self-schema was a significant predictor of both posttreatment sexual behavior and responsiveness for the cancer survivors in analyses that controlled for pre-cancer levels of sexual behavior or responsiveness, extent of disease/treatment, and menopausal symptoms.

To enhance the clarity of the comparison of the surgery groups and rigor of the test of sexual schema, we obtained a homogeneous breast cancer sample and conducted the assessment at a single, critical period. Women with regional malignant disease were selected as these women have a similar prognosis and adjuvant therapy period. These are the days when, for example, the chest wound has healed, women are visited by Reach to Recovery volunteers, and prostheses, if needed, are selected and first worn. This is, indeed, an early, critical period for women diagnosed with breast cancer (Rollin, 1976).

Method

Participants

Participants were 190 women who had been diagnosed and surgically treated for Stage II (87%) or Stage III (13%) breast cancer. The staging schema of the American Joint Committee on Cancer and the International Union Against Cancer was used, and the obtained distribution corresponds to national trends for women with regional breast disease (ACS, 2000). Women were, on average, 36 days postsurgery (SD = 16 days, range = 5-101 days), and they had not yet begun their adjuvant therapy. The distribution of surgery type was as follows: 78 (41%) women received lumpectomy (BCT), 29 (15%) women received MRm/W, 79 (42%) women received MRm, and 4 (2%) women received elective bilateral mastectomy. Women were anticipating the start of their adjuvant therapy (e.g., combinations of hormonal therapy [Tamoxifen], radiotherapy, chemotherapy, and/or chemotherapy followed by bone marrow transplantation) in the days following their accrual and assessment.

A demographic analysis revealed that the mean age for the participants was 51 years (SD = 11 years, range = 30-84 years), the mean level of education was 15 years (some college), the annual personal income ranged from $2,000 to $200,000, annual family income ranged from $5,000 to $350,000, and 67% of the sample was employed outside the home. The racial distribution of the group was as follows: 169 (89%) were Caucasian, 19 (10%) were African American, and 2 (1%) were Hispanic.

Marital/partner status of the sample was 65% married (M = 22 years), but 72% were living with a partner. Nine percent of the women had never been married, and 28% of the women were living alone. Of the partnered relationships, it appeared that all but 3 (2 lesbian and 1 bisexual) were heterosexual. The sexually active status of each woman at cancer diagnosis was determined. A woman was defined as previously "sexually active" if she reported the occurrence of intercourse (or an equivalent intimate activity) at least once a month for the 2 months immediately preceding her diagnosis. Thus, 65% of the women were sexually active prior to diagnosis, and at the time of the assessment, 58% of them had resumed intercourse (or an equivalent form of intimacy) since surgery.

Measures

Individual Differences

The Sexual Self Schema Scale for Women (Andersen & Cyranowski, 1994) was used. This scale contains 26 trait adjectives (e.g., caustious, loving, open-minded, and experienced) plus 24 adjective filters (e.g., generous, shallow, kind, and practical) that are self-rated from 0 (not at all descriptive of me) to 6 (very descriptive of me). Factor analytic studies have shown that the items tap three dimensions: (a) Passionate/Romantic, (b) Open/Direct, and (c) Embarrassed/Conservative. Items from Factors 1 and 2 are summed, and items from Factor 3 are subtracted so that a total schema score can range from -42 to 102, with numerically lower scores representing a negative sexual self-view and higher scores reflecting a more positive sexual self-view. Factor/factor correlations are .47 for Factor 1/Factor 2, -.03 for Factor 1/Factor 3, and -.13 for Factor 1/Factor 3; internal consistency for the scale is .70. For this sample, the mean total schema score was 59 (SD = 13.31), range = 14-89, which is comparable with that previously reported for healthy women (i.e., M = 60, SD = 14.15; Andersen & Cyranowski, 1994). Test-retest reliability indicates stability, with 2-week estimates of .89, 2-month reliability of .88, and an 18-month reliability of .72. The measure predicts a wide range of sexual attitudes, behaviors, and responses (Cyranowski & Andersen, 1998) and cognitions (Cyranowski & Andersen, in press). Also, it is uncontaminated with social desirability or negative affect biases, and process studies indicate that respondents are unaware that a sexual construct is being assessed (see Andersen & Cyranowski, 1994, for a complete discussion).

Sexuality

Sexual behavior. Two types of data were obtained. Past sexual behavior was assessed for the 2 months prior to diagnosis for the frequency of intercourse and the frequency of kissing. Each was rated using a 10-point rating scale (0 = this activity did not occur, 5 = three times per week, 9 = this activity occurred more than 4 times a day). The two items were summed. Data from female cancer and healthy samples indicate a 4-month test-retest reliability of .75 for such ratings (Andersen & Broffitt, 1988) and an ability of these items to distinguish cancer and healthy groups (e.g., Andersen et al., 1997). Current sexual behaviors, including behaviors evidencing sexual approach as well as avoidance, were assessed with a 10-point scale (0 = this activity did not occur, 5 = three times per week, 9 = this activity occurred more than 4 times a day). Approach behaviors included affectionate kissing of partner, passionate ("deep") kissing of partner, erotic embrace, and kissing of sensitive (nongenital) areas and were drawn from a factor
analytic study (Andersen & Brofftt, 1988) of the Sexual Experience Scale (Derogatis & Melisaratos, 1979). A current sexual behavior score was obtained by summing the four items; internal consistency was .84. The total score ranged from 0 to 36. Women also rated the frequency of their sexually avoidant behaviors (e.g., frequency of declining, refusing, or avoiding intercourse) since their breast surgery, and their avoidance score ranged from 0 to 7.

Sexual response cycle. A 27-item questionnaire assessing the physiologic phases of the sexual response cycle was used. Items were drawn from a structured interview format (Andersen et al., 1989a), but when used as a questionnaire the items had distinguished the responses of women with cancer versus healthy women (Andersen et al., 1997; Cyranowski & Andersen, 1998). Items for each phase of the response cycle—desire, excitement, orgasm, and resolution—were included along with general satisfaction items. Women rated the frequency of the response/feeling on a 5-point scale ranging from 0 (never) to 4 (always). A principal axis factor analysis, with an oblique (Harris Kaiser) rotation, revealed three sexual response cycle factors—Sexual Desire (6 items), Sexual Arousal (7 items), and Orgasm/Resolution (10 items)—with an additional factor for General Satisfaction (4 items). Items assessing Sexual Desire focused on sexual interest (e.g., “How often were you not interested in your partner’s suggestions for sex?”) and “How often did you desire sex?” Ratings of Sexual Arousal included physiologic markers (e.g., awareness of vaginal lubrication. feelings that the vagina was “too tight” for penetration, and pain or discomfort), and Orgasm/Resolution was assessed with indicators of climax (e.g., awareness of throbbing sensations in the vagina, feelings of body warmth, sweating, heavy breathing, and rapid breathing) and the feelings of general relaxation, contentment, and tension release. Finally, 4 items assessed General Satisfaction with sexuality (e.g., satisfaction with the frequency of sexual activity).

Negative valence items were reverse-scored prior to summing the items for a scale. Scores could range from 0 to 108 for total responsiveness (sum of all of the items), 0 to 24 for Sexual Desire, 0 to 28 for Sexual Arousal, 0 to 40 for Orgasm/Resolution, and 0 to 16 for General Satisfaction. Internal consistency estimates for total responsiveness was .91; and those for each scale were .77 (Sexual Desire), .80 (Sexual Arousal), .86 (Orgasm/Resolution), and .72 (General Satisfaction). Sexual response cycle factor intercorrelations ranged from .35 to .64, and the sexual response cycle correlations with the General Satisfaction factor ranged from .48 to .66. For this sample, the mean scores were 7.07 (range = 28–98) for total responsiveness, 12.9 for Sexual Desire (range = 0–21), 18.6 for Sexual Arousal (range = 2–27), 28.1 for Orgasm/Resolution (range = 4–39), and 10.4 for General Satisfaction (range = 4–16).

Global evaluation. A 9-point scale ranging from 0 (could not be worse) to 8 (could not be better) (Derogatis & Melisaratos, 1979) was used for women to rate their view of their sexual life prior to their cancer diagnosis. This global evaluation is sensitive to pre-post cancer treatment effects (e.g., Andersen et al., 1989a, 1997) and cancer groups (Andersen & Jochimsen, 1985). The median was 4.0, the mean was 4.2, and the standard deviation was 1.9.

Body Change Stress

Traumatic stress. Research investigating psychological reactions to stressful life events has identified responses of intrusion and avoidance as characterizing individuals’ subjective experience to the stressor. Intrusion has been typically operationalized as involuntary thoughts or images associated with the traumatic stressor, repetitive behaviors, or strong waves of distress-laden feelings (Allen, 1994), whereas avoidance responses have included measurement of behavioral inhibition related to the meanings and/or consequences of the event and emotional blunting (Keane & Wolfe, 1990).

For our purpose, change in physique due to breast cancer surgery was hypothesized as the traumatic life event. Thus, the 15-item Breast Impact of Treatment Scale (BITS) was developed to examine intrusive thoughts (nine items) and avoidant reactions (six items) associated with breast changes. Patterned after the Impact of Events Scale (IES; Horowitz, Wilner, & Alvarez, 1979), the BITS item content was derived from prior breast cancer research assessing posttreatment concerns of women receiving breast surgery (e.g., avoidance of nudity, thoughts of disfigurement, and feelings of body self-consciousness; Beckmann et al., 1983; Carver et al., 1994; Meyer & Aspegren, 1985; Pozo et al., 1992; Schaie et al., 1983), but the items were worded to tap intrusive (e.g., “How my body has changed pops into my mind” and “When I see other women, I think that my body appears different than theirs”) and avoidant processes (e.g., “I don’t want to deal with how my body looks” and “I avoid looking at or touching my scars”).

The internal structure of the BITS was examined using exploratory factor analysis (CEFA software; Browne, Cudeck, Taftzeni, & Mels, 1998). Based on prior research on traumatic stress, two factors (Avoidance and Intrusion) were estimated by ordinary least squares (OLS) and an oblique rotation to a partially specified target (Browne, 1972) was conducted. Analyses indicated that all but one of the residuals for the OLS matrix were under .05 and the largest absolute residual was .20. These two results indicated that the data matrix and the hypothesized model were highly correlated. This factor solution was supported by several fit measures (root-mean-square error of approximation [RMSEA] = .067, 90% confidence interval = .046–.087, p = .08; Browne & Cudeck, 1993). It should be noted that a nontraditional p value above .05 and an RMSEA between .05 and .08 indicate support for the model (Browne et al., 1998).

The first factor was labeled Intrusion and included eight items; the second factor, labeled Avoidance, included the remaining seven items. Internal consistency was .88 for the Intrusion factor and .84 for the Avoidance factor; the factors correlated .70. Consistent with the scoring of the IES (Horowitz et al., 1979), response choices were weighted (0 = not at all, 1 = rarely, 3 = sometimes, 5 = often) for the three degrees of positive endorsement of frequency. Items were summed to obtain subscale scores corresponding to Factor 1 (Intrusion; range = 0–45) and Factor 2 (Avoidance; range = 0–30), and the BITS total score (range = 0–75) was calculated by summing the factor subscales. We found that the scale is uncontaminated by social desirability, as correlation with the Marklowe-Crowne Social Desirability Scale (Crowne & Marlowe, 1960) was .09. These data lend support to the internal validity of the BITS. For this sample, the mean value for the total score was 25.9 (range = 0–67), the mean value for the Avoidance subscale was 10.6 (range = 0–33), and the mean value for the Intrusion subscale was 15.3 (range = 0–38).

Situational discomfort. Five situations typically reported as distressing to women following surgical treatment for breast cancer were generated. The content included looking at the chest while undressed, disrobing in front of a sexual partner, a sexual partner viewing the surgical site, undressing in the presence of other women, and allowing others (e.g., female friends) to see the surgical site. Items such as these have differentiated women receiving alternative surgeries (see, e.g., Bartelink, van Dam, & van Dongen, 1985; Beckmann et al., 1983; Kemeny et al., 1988; Margolis et al., 1990; Meyer & Aspegren, 1989; Noguchi et al., 1993). A 5-point rating of distress (e.g., 0 = not at all distressed, 4 = extremely distressed) was used, and items were summed for a total distress score (range = 0–20). Internal consistency was .86. The mean score among women in this sample was 6.3 (SD = 4.9), range = 0–20).

Body satisfaction. The 10-item version (short form) of the Body Satisfaction Scale (BSS; Andersen & LeGrand, 1991; Berscheid et al., 1973) was used to assess satisfaction with the physical body (i.e., body parts) following surgical treatment. Factor analysis has yielded two factors: Satisfaction With Appearance (including facial and sexual parts [shape and size of breasts and genitals]) and Weight or Body Correlates of Weight (hips, thighs, and buttocks; Andersen & LeGrand, 1991). In addition, a single item assessed satisfaction with overall appearance. Participants rated the 10 body items on a 6-point satisfaction/dissatisfaction scale (1 = extremely satisfied, 3 = satisfied, 6 = extremely dissatisfied), with a higher score indicating greater body dissatisfaction. Internal consistency was .84.
A BSS total score was obtained by summing all of the items; the mean total score was 34.42 (%). Of those approached, rates fluctuated over the course of the study depending on hospital factors (e.g., influx of new surgeons into the department and relocation of the Cancer Center, where psychologic, behavioral, and medical data were collected and a 60-ml blood sample was taken). The majority of the data for the present investigation were administered along with the questionnaire battery and structured interview as part of their initial assessment for the Stress and Immunity Breast Cancer Project.

Procedures

Recruited consecutively from mid-1994 through mid-1999, the majority of the women (81%) were being treated at a National Cancer Institute-designated, university-affiliated Comprehensive Center and the remainder (19%) were receiving treatment at community hospitals within a 90-mi (144-Km) radius of the Cancer Center. All of the study participants were enrolled in a larger parent study, the Stress and Immunity Breast Cancer Project, 1 a randomized clinical trial.

Only women meeting the above disease stage and treatment schedule were eligible. Women meeting the criteria were excluded from participation for any of the following reasons: age less than 20 years or greater than 90 years, any previous cancer diagnosis, having begun adjuvant therapy, severe mental retardation, severe psychopathology (e.g., schizophrenia or noncompliance with bipolar disorder treatment), dementia, or other life-threatening conditions (e.g., renal failure). Participation rates fluctuated over the course of the study depending on hospital factors (e.g., influx of new surgeons into the department and relocation of the breast oncology outpatient clinic) but averaged 75%. Of those approached for participation, the major (top three) reasons women gave for nonparticipation were insufficient time (29%), too far of a distance (e.g., >40 mi [>64 Kms] from study hospital) to travel for participation (32%), and not interested (27%). Analyses of participants and refusers revealed no significant differences on sociodemographic (i.e., age, marital status, and race) or disease/treatment-relevant (i.e., menopausal status, estrogen receptor, stage, number of positive nodes, and days since surgery) variables.

All of the participants came to the General Clinical Research Center at the university or a regional outpatient breast cancer clinic of the Cancer Center, where psychologic, behavioral, and medical data were collected and a 60-ml blood sample was taken. The majority of the data for the present investigation were administered along with the questionnaire battery and structured interview as part of their initial assessment for the Stress and Immunity Breast Cancer Project when accrual began; approximately 4 months into accrual, the sexuality and body change stress assessment was expanded (i.e., the sexual response cycle measure and the impact of treatment measure were added) to complete the assessment. Participants were unaware of this addition to the assessment battery. Women were paid $30 for participation and reimbursed for their parking/transportation expenses (approximately $4). Following this initial assessment, women were randomized for the larger study and then followed for future assessments.

Results

Preliminary Analyses

Descriptive analyses indicated that 4 women had received elective bilateral mastectomy. Because of the small numbers in this group, they were eliminated from all of the analyses of covariance (ANCOVAs) and regression analyses, resulting in a sample size of 186. However, in the interest of providing clinical detail, we display their data in Table 1 along with the data from the three-group comparisons.

Comparisons were made between the remaining surgical groups (BCT, MRMw/R, and MRM) on variables that could potentially covary with outcome. There were no significant differences (p > .10) between the groups on days since surgery or the sociodemographic variables of education, marital status, or race, although the groups differed significantly (p < .001) in age (BCT = 50 years, MRMw/R = 45 years, and MRM = 54 years). Data have suggested that younger women may report greater affective distress

Table 1

<table>
<thead>
<tr>
<th>Area and outcome</th>
<th>Surgical group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BCT</td>
</tr>
<tr>
<td>Sexual behavior</td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>18.06</td>
</tr>
<tr>
<td>Avoidance of activity</td>
<td>0.91</td>
</tr>
<tr>
<td>Resume intercourse (%)</td>
<td>87</td>
</tr>
<tr>
<td>Sexual response cycle</td>
<td>76.29</td>
</tr>
<tr>
<td>Desire (absence of)</td>
<td>13.03</td>
</tr>
<tr>
<td>Arousal</td>
<td>20.60</td>
</tr>
<tr>
<td>Orgasm/resolution</td>
<td>30.56</td>
</tr>
<tr>
<td>General satisfaction</td>
<td>11.34</td>
</tr>
<tr>
<td>Body change stress</td>
<td></td>
</tr>
<tr>
<td>Traumatic stress</td>
<td>17.86</td>
</tr>
<tr>
<td>Avoidance</td>
<td>7.95</td>
</tr>
<tr>
<td>Intrusion</td>
<td>10.28</td>
</tr>
<tr>
<td>Situational distress</td>
<td>3.29</td>
</tr>
<tr>
<td>Body satisfaction</td>
<td>33.38</td>
</tr>
</tbody>
</table>

Note. For the outcomes, a higher score indicates a greater level of behavior/response, with the exception of body satisfaction, for which a higher score indicates greater body dissatisfaction. Within rows, different subscripts indicate significant differences (p < .05) for the multiple comparison tests comparing the BCT, MRMw/R, and MRM groups. Empty cells indicate insufficient data. ANCOVA = analysis of covariance; BCT = breast conservation therapy; MRMw/R = modified radical mastectomy with reconstruction; MRM = modified radical mastectomy; BiM = bilateral mastectomy.

1 Data from the first 116 women accrued to the Stress and Immunity Breast Cancer Project (including 116 of the 190 women included here) have been published (Andersen et al., 1998). The latter article documented a negative relationship between stress and immunity; there is no overlap of measures between Andersen et al. and the present report.
following breast cancer surgery (Ganz et al., 1993), and gen-
erational differences in sexual behavior have been reported (Lauman,
Gagnon, Michael, & Michaels, 1994). Therefore, age was used as a
covariate in all of the subsequent analyses.

Data for women who were not sexually active prior to surgery
(i.e., denied having engaged in a sexually intimate activity, such as
intercourse, at least once in the 2 months prior to surgery) were
included only for the body change analyses. Considering all rea-
sons, we found that 35% of the sample indicated that they were not
sexually active prior to their diagnosis. The most common reason
for sexual inactivity was the lack of an intimate partner (92%).

Analyses for the sexuality data were conducted using only the
data from the 122 women reporting prior sexual activity, and thus
the sample sizes were as follows: n = 55 for BCT, n = 25 for
MRMw/R, and n = 44 for MRM. For this sample, there were no
significant differences (ps > .05) between the sexually active
women in the surgical groups on days since surgery or the socio-
demographic variables of education, marital status, or race, but the
groups differed significantly (p < .05) in age (BCT = 48 years,
MRMw/R = 45 years, and MRM = 51 years). Again, age was
used as a covariate in the analyses for sexual outcomes.

Part 1: Comparison of Surgical Groups:
MRMw/R Versus BCT or MRM

Sexual Behavior

The assumption of the group design used here was that at an
earlier point in time, prior to the diagnosis of cancer, the three
surgical groups had comparable levels of sexual functioning and
did not differ on dimensions that might covary with postsurgical
sexual outcome. To test these assumptions, we conducted a one-
way ANCOVA design (using age as the covariate) on the women's
reports of the frequency of intercourse, frequency of kissing, and
global evaluation of their sexual life for the 2 months prior to their
cancer diagnosis. No significant group differences (ps > .10) were
found. Grand means were as follows: intercourse frequency = 3.14
(3 = once per week), kissing frequency = 6.90 (7 = once per
day), and global evaluation = 4.71 (4 = above average). These data indicate that the sexually active women in the
three surgical groups reported statistically equivalent levels of
sexual behavior and satisfaction for the months immediately prior
to their cancer diagnosis, suggesting that the groups had compara-
ble levels of prior sexual functioning.

Analyses for approach and avoidance of sexual behaviors/activ-
ities were conducted. ANCOVAs for the measure of the frequency
of current sexual activities were significant, F(2, 101) = 4.23, p <
.05, and the least significant difference test was used for follow-up
pairwise multiple comparisons (see Table 1 for mean scores across
groups and multiple comparison results). They indicated that the
frequency of current sexual behavior was significantly lower for
the women receiving reconstruction (for MRMw/R, M = 12.71)
than the frequency of behavior of women who received either
lumpectomy (BCT; M = 18.06) or MRM (M = 16.57). However,
the ANCOVA was not significant for the frequency of avoidant
sexual activity. We also tested whether there was a differential rate
of resumption of sexual intercourse following breast cancer sur-
gery. The Pearson chi-square was significant, χ²(2, N = 107) = 8.69, p < .05, and the rates of resuming intercourse for the
groups are presented in Table 1. They indicate that more of the
women receiving BCT (87%) resumed intercourse than did women
receiving mastectomy (57% and 68% for the MRMw/R and MRM
groups, respectively).

For the sexual response cycle data, we first conducted an
ANOVA on the total score before proceeding with analyses for
the subscales. The ANCOVA for the total score was significant,
F(2, 55) = 3.40, p < .05. Follow-up ANCOVAs were then
conducted for each subscale composing the total score. The
ANOVA for the desire phase was not significant, although
ANOVA for all of the remaining phases and general satisfaction
were significant: for Sexual Arousal, F(2, 57) = 3.34, p < .05; for
Orgasm/Resolution, F(2, 63) = 5.62, p < .01; and for General
Satisfaction, F(2, 65) = 4.37, p < .05. Multiple comparisons
indicated that women treated with BCT reported significantly
greater arousal during sexual activity than did women treated with
MRM. For both Orgasm/Resolution and General Satisfaction,
follow-up multiple comparisons indicated that the women receiv-
ing BCT and MRM reported significantly more signs and symp-
toms of orgasm and feelings of sexual satisfaction during their
current sexual activity than did women receiving MRMw/R (see
Table 1 for means).

Body Change Stress

Three aspects of body change were assessed: traumatic stress;
situational distress; and, in contrast, self-reports of body satisfac-
tion. An ANCOVA (age as the covariate) was first conducted on
the full scale score for the measure of traumatic stress and was
significant, F(2, 148) = 19.62, p < .0001. Therefore, follow-up
ANOVA for the Intrusion, F(2, 153) = 20.20, p < .0001, and
Avoidance, F(2, 149) = 9.83, p < .001, subscales were conducted
and were also found to be significant. Multiple comparison anal-
yses for the total score and the two subscales all yielded the same
pattern of results (see Table 1 for means). That is, the lowest levels
of traumatic stress, manifested by intrusive thoughts and avoidant
behaviors regarding breast changes, were reported by the women
receiving BCT, whereas women receiving mastectomy, with re-
construction (MRMw/R) or without (MRM), reported significantly
higher levels of traumatic stress. In fact, the scores for the mas-
tectomy groups were more than 1 SD above the mean of the scores
for the BCT group.

The ANCOVA for the measure of situational distress was also
significant, F(2, 135) = 29.15, p < .0001. Follow-up multiple
comparisons (see Table 1) indicated that women receiving BCT
reported significantly less situational distress than did women
receiving MRM or MRMw/R.

The ANCOVA for the full scale score of the body satisfaction
measure was also significant, F(2, 176) = 3.76, p < .05. Follow-
up multiple comparisons (see Table 1) indicated that the lowest level of body satisfaction was reported by the women
receiving MRM only.

Part 2: Tests of the Relationship Between Sexual Self-
Schema and Sexual Morbidity and Body Change Stress

The above analyses indicate that women with breast cancer who
received radical surgery, with or without reconstruction, experi-
enced significantly greater sexual disruption and body change stress than did women who received more conservative surgical
therapy (i.e., BCT), consistent with hypotheses concerning impor-
BREAST CANCER SURGERY

Table 2
Hierarchical Regression Analyses Testing Model of Morbidity (Andersen, 1994) and Sexual Self-Schema in Relationship to Sexual Behavior Outcomes

<table>
<thead>
<tr>
<th>Step</th>
<th>Predictor</th>
<th>β</th>
<th>R</th>
<th>R²</th>
<th>t</th>
<th>df</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Predicted outcome: Current sexual activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Menopausal status</td>
<td>-0.21</td>
<td>.24</td>
<td>.06</td>
<td>-2.50**</td>
<td>104</td>
</tr>
<tr>
<td>2</td>
<td>Prior frequency of intercourse</td>
<td>0.32</td>
<td>.45</td>
<td>.20</td>
<td>3.69***</td>
<td>103</td>
</tr>
<tr>
<td>3</td>
<td>Stage of disease</td>
<td>-0.01</td>
<td>.45</td>
<td>.20</td>
<td>-0.06</td>
<td>102</td>
</tr>
<tr>
<td>4</td>
<td>Extent of treatment*</td>
<td>0.35</td>
<td>.54</td>
<td>.29</td>
<td>3.13**</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>Sexual self-schema</td>
<td>0.18</td>
<td>.57</td>
<td>.32</td>
<td>2.08*</td>
<td>99</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step</th>
<th>Predictor</th>
<th>β</th>
<th>R</th>
<th>R²</th>
<th>t</th>
<th>df</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Predicted outcome: Avoidance of sexual activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Menopausal status</td>
<td>-0.13</td>
<td>.12</td>
<td>.01</td>
<td>-1.35</td>
<td>106</td>
</tr>
<tr>
<td>2</td>
<td>Prior frequency of intercourse</td>
<td>0.06</td>
<td>.12</td>
<td>.01</td>
<td>0.58</td>
<td>105</td>
</tr>
<tr>
<td>3</td>
<td>Stage of disease</td>
<td>0.03</td>
<td>.13</td>
<td>.02</td>
<td>0.31</td>
<td>104</td>
</tr>
<tr>
<td>4</td>
<td>Extent of treatment*</td>
<td>0.06</td>
<td>.16</td>
<td>.03</td>
<td>0.44</td>
<td>102</td>
</tr>
<tr>
<td>5</td>
<td>Sexual self-schema</td>
<td>-0.24</td>
<td>.29</td>
<td>.08</td>
<td>-2.44*</td>
<td>101</td>
</tr>
</tbody>
</table>

* There are two levels of this variable (see Footnote 2).
*p < .05. **p < .01. ***p < .001.

The second goal of the research was to test the added contribution of a psychological individual difference variable, sexual self-schema, when evaluating sexual morbidity and body change stress. We conducted preliminary one-way analyses of variance (ANOVAs; group [BCT vs. MRMw/R vs. MRM]) and compared the surgical groups on the schema scores. Analyses for the total score as well as the three subscales were not significant (all p > .05), indicating that sexual self-schema did not covary with surgery group.

Variables were entered in regression analyses in the order hypothesized for the prediction of posttreatment sexual morbidity (i.e., Andersen, 1994; see, e.g., Andersen et al., 1997). For the sexuality analyses, we entered the following variables: menopausal status (i.e., pre- vs. postmenopausal; this variable is relevant to genital sexual responses [e.g., Walling, Andersen, & Johnson, 1990] and, indirectly, serves as a proxy for age); sexual functioning prior to diagnosis (i.e., operationalized with the previous frequency of intercourse); stage of disease (i.e., Stage II vs. Stage III); extent of treatment (i.e., surgery type)\(^2\); and, finally, sexual self-schema. For the body change analyses, the following variables were entered: menopause status; stage of disease; extent of treatment; and, finally, sexual self-schema. For the sexuality analyses, only data from women who were sexually active prior to their diagnosis were used; data from the entire sample were used for the body change analyses.

Sexuality

We conducted two hierarchical multiple regression analyses to evaluate current sexual behaviors, both approach and avoidant sexual activity. Both analyses produced comparable, significant findings, and the results are provided in Table 2. As would be hypothesized from sexuality and cancer literatures, in the prediction of frequency of current sexual activity (approach), the menopause and prior frequency of intercourse control variables added significant incremental variance. The extent of surgery variable was also significant. Specifically, significant partial coefficients for both lumpectomy and mastectomy variables indicated that there were significant differences in current sexual activity means between women receiving reconstruction (MRMw/R) and both BCT and MRM women after controlling for all other predictors in the equation. Following these, schema added an additional significant percentage of the variance, for a total of 32% of the variance accounted for by the predictors. In the analysis for avoidance of sexual activity, only the sexual self-schema variable was a significant predictor, adding 5%, for a total of 8% of the variance accounted for by all of the predictors.

We conducted regression analyses for the total score on the sexual response cycle measure (see Table 3). Here, the extent of surgery accounted for significant portion of variance (13%). Significant partial coefficients for both lumpectomy and mastectomy variables indicated that there were significant differences in total sexual responsiveness means between MRMw/R women and both BCT and MRM women after controlling for all other predictors in the equation. Finally, sexual schema added an additional 12% of the variance, for a total of 31% of the variance accounted for by the predictors. Follow-up regression analyses were conducted for the subscales for the response cycle measure, and the data are displayed in Table 3. In each case, the analyses were significant, and sexual self-schema accounted for significant additional variance.

\(^2\) For the purpose of the regression analyses, the extent of treatment (i.e., surgery type) variable was recoded into two dummy variables containing all of the information of the three-level categorical variable. The first dummy variable was coded 1 for BCT and 0 for the other groups; the second dummy variable was coded 1 for MRM group and 0 for the other groups. In addition to determining the amount of variance surgery group accounts for in the outcome variables, significance tests for regression coefficients for the BCT and MRM dummy variables provide for the testing of specific hypotheses about differences in outcome variable means between the BCT group and the MRM group and between the MRM group and the MRMw/R group.
Table 3
Hierarchical Regression Analyses Testing Model of Morbidity (Andersen, 1994) and Sexual Self-Schema in Relationship to Sexual Response Cycle Outcomes

<table>
<thead>
<tr>
<th>Step</th>
<th>Predictor</th>
<th>β</th>
<th>R</th>
<th>R²</th>
<th>t</th>
<th>df</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Menopausal status</td>
<td>-0.16</td>
<td>0.17</td>
<td>0.03</td>
<td>-1.39</td>
<td>58</td>
</tr>
<tr>
<td>2</td>
<td>Prior frequency of intercourse</td>
<td>0.04</td>
<td>0.20</td>
<td>0.04</td>
<td>0.30</td>
<td>57</td>
</tr>
<tr>
<td>3</td>
<td>Stage of disease</td>
<td>-0.13</td>
<td>0.24</td>
<td>0.06</td>
<td>-1.06</td>
<td>56</td>
</tr>
<tr>
<td>4</td>
<td>Extent of treatment*</td>
<td>0.39</td>
<td>0.44</td>
<td>0.19</td>
<td>2.52*</td>
<td>54</td>
</tr>
<tr>
<td>5</td>
<td>Sexual self-schema</td>
<td>0.31</td>
<td>0.56</td>
<td>0.31</td>
<td>3.01***</td>
<td>53</td>
</tr>
</tbody>
</table>

Predicted outcome: Total sexual responsiveness

<table>
<thead>
<tr>
<th>Step</th>
<th>Predictor</th>
<th>β</th>
<th>R</th>
<th>R²</th>
<th>t</th>
<th>df</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Menopausal status</td>
<td>-0.27</td>
<td>0.27</td>
<td>0.07</td>
<td>-2.56**</td>
<td>76</td>
</tr>
<tr>
<td>2</td>
<td>Prior frequency of intercourse</td>
<td>0.18</td>
<td>0.37</td>
<td>0.14</td>
<td>1.65</td>
<td>75</td>
</tr>
<tr>
<td>3</td>
<td>Stage of disease</td>
<td>-0.01</td>
<td>0.37</td>
<td>0.14</td>
<td>-0.09</td>
<td>74</td>
</tr>
<tr>
<td>4</td>
<td>Extent of treatment*</td>
<td>0.07</td>
<td>0.40</td>
<td>0.16</td>
<td>0.51</td>
<td>72</td>
</tr>
<tr>
<td>5</td>
<td>Sexual self-schema</td>
<td>0.15</td>
<td>0.52</td>
<td>0.27</td>
<td>3.19***</td>
<td>71</td>
</tr>
</tbody>
</table>

Predicted outcome: Sexual desire

<table>
<thead>
<tr>
<th>Step</th>
<th>Predictor</th>
<th>β</th>
<th>R</th>
<th>R²</th>
<th>t</th>
<th>df</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Menopausal status</td>
<td>-0.32</td>
<td>0.35</td>
<td>0.13</td>
<td>-3.47**</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>Prior frequency of intercourse</td>
<td>0.05</td>
<td>0.37</td>
<td>0.14</td>
<td>1.52</td>
<td>59</td>
</tr>
<tr>
<td>3</td>
<td>Stage of disease</td>
<td>-0.09</td>
<td>0.39</td>
<td>0.15</td>
<td>-0.76</td>
<td>58</td>
</tr>
<tr>
<td>4</td>
<td>Extent of treatment*</td>
<td>0.20</td>
<td>0.45</td>
<td>0.21</td>
<td>1.59</td>
<td>56</td>
</tr>
<tr>
<td>5</td>
<td>Sexual self-schema</td>
<td>0.01</td>
<td>0.52</td>
<td>0.27</td>
<td>2.27*</td>
<td>55</td>
</tr>
</tbody>
</table>

Predicted outcome: Sexual arousal

<table>
<thead>
<tr>
<th>Step</th>
<th>Predictor</th>
<th>β</th>
<th>R</th>
<th>R²</th>
<th>t</th>
<th>df</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Menopausal status</td>
<td>-0.10</td>
<td>0.08</td>
<td>0.01</td>
<td>-0.86</td>
<td>66</td>
</tr>
<tr>
<td>2</td>
<td>Prior frequency of intercourse</td>
<td>0.00</td>
<td>0.09</td>
<td>0.01</td>
<td>-0.03</td>
<td>65</td>
</tr>
<tr>
<td>3</td>
<td>Stage of disease</td>
<td>-0.11</td>
<td>0.14</td>
<td>0.02</td>
<td>-0.98</td>
<td>64</td>
</tr>
<tr>
<td>4</td>
<td>Extent of treatment*</td>
<td>0.51</td>
<td>0.46</td>
<td>0.21</td>
<td>3.38***</td>
<td>62</td>
</tr>
<tr>
<td>5</td>
<td>Sexual self-schema</td>
<td>0.46</td>
<td>0.51</td>
<td>0.26</td>
<td>2.01*</td>
<td>61</td>
</tr>
</tbody>
</table>

Predicted outcome: Orgasm/Resolution

* There are two levels of this variable (see Footnote 2).
* p < .05. ** p < .01. *** p < .001.

Schema accounted for 11% of the variance in the total of 27% for Sexual Desire, 6% of the variance in the total of 27% for Sexual Arousal, and 5% of the variance in the total of 26% for Orgasm/Resolution.

Body Change Stress

All of the participants were included in regression analyses investigating traumatic stress, situational distress, and body satisfaction. The regression analysis with the total score on traumatic stress measure was significant, as were the follow-up regression analyses for the Intrusion and Avoidance subscales. As the pattern of findings across the scales was similar, we provide for illustration in Table 4 the results for the total score. Of the control variables, only the extent of surgery added significant incremental variance (21%). Significant partial coefficients for the BCT variable indicated significant mean differences in traumatic stress for MRMw/R and BCT women after controlling for all of the other predictors in the equation. Sexual self-schema added an additional 3%, for a total of 24% of the variance in traumatic stress accounted for by the predictors. Examining the subscales, we found that sexual self-schema accounted for an additional significant 6% of the variance in the total of 18% for the Avoidance score and 2% of the variance in the total of 25% for the Intrusion score.

The regression analysis for the prediction of the situational distress was also significant, and results are displayed in Table 4. Of the control variables, the extent of surgery was most influential, accounting for a significant 30% of the variance. Significant partial coefficients for the BCT variable indicated significant mean differences in situational discomfort for MRMw/R and BCT women after controlling for all of the other predictors in the equation; the t test for the MRM coefficients was not significant. Sexual self-schema accounted for an additional significant 3%, for a total of 35% of the variance in situational distress scores.

Finally, the regression analysis for the body satisfaction measure was not significant. In combination, the control and schema variables accounted only for 5% of the variance in the prediction of body satisfaction scores.

Follow-Up Analyses

We conducted post hoc analyses examining the significant sexual self-schema findings. We view sexual self-schema as a construct, underscoring that "the measure is more than the sum of the
Table 4
Results of Hierarchical Regression Analyses Testing Model of Morbidity (Andersen, 1994) and Sexual Self-Schema in Predicting Body Change Stress Outcomes

<table>
<thead>
<tr>
<th>Step</th>
<th>Predictor</th>
<th>β</th>
<th>R</th>
<th>R²</th>
<th>t</th>
<th>df</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Predicted outcome: Traumatic stress</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Menopausal status</td>
<td>-0.00</td>
<td>.01</td>
<td>.00</td>
<td>-0.03</td>
<td>152</td>
</tr>
<tr>
<td>2</td>
<td>Stage of disease</td>
<td>-0.08</td>
<td>.01</td>
<td>.00</td>
<td>-1.08</td>
<td>151</td>
</tr>
<tr>
<td>3</td>
<td>Extent of treatment*</td>
<td>-0.51</td>
<td>.46</td>
<td>.21</td>
<td>-4.73***</td>
<td>149</td>
</tr>
<tr>
<td>4</td>
<td>Sexual self-schema</td>
<td>-0.16</td>
<td>.49</td>
<td>.24</td>
<td>-2.24*</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>Predicted outcome: Situational distress</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Menopausal status</td>
<td>0.06</td>
<td>.10</td>
<td>.01</td>
<td>0.88</td>
<td>139</td>
</tr>
<tr>
<td>2</td>
<td>Stage of disease</td>
<td>-0.02</td>
<td>.13</td>
<td>.02</td>
<td>-0.22</td>
<td>138</td>
</tr>
<tr>
<td>3</td>
<td>Extent of surgery*</td>
<td>-0.60</td>
<td>.57</td>
<td>.32</td>
<td>-5.81***</td>
<td>136</td>
</tr>
<tr>
<td>4</td>
<td>Sexual self-schema</td>
<td>-0.17</td>
<td>.59</td>
<td>.35</td>
<td>-2.42*</td>
<td>135</td>
</tr>
</tbody>
</table>

* There are two levels of this variable (see Footnote 2).
* p < .05. ** p < .01.

Table 5
Unique Variance Accounted for by the Factor Scores of the Sexual Self Schema Scale for Women (Andersen & Cyranowski, 1994) in Predicting Sexual Behavior, Sexual Response Cycle, and Body Change Stress Outcomes

<table>
<thead>
<tr>
<th>Predicted outcome</th>
<th>Factor 1: Passionate/Romantic</th>
<th>Factor 2: Open/Direct</th>
<th>Factor 3: Embarrassed/Conservative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current sexual activity</td>
<td>.052*</td>
<td>.003</td>
<td>.008</td>
</tr>
<tr>
<td>Avoidance of sexual activity</td>
<td>.009</td>
<td>.033</td>
<td>.071*</td>
</tr>
<tr>
<td>Sexual response cycle</td>
<td>.050</td>
<td>.060*</td>
<td>.053</td>
</tr>
<tr>
<td>Desire</td>
<td>.022</td>
<td>.046*</td>
<td>.120**</td>
</tr>
<tr>
<td>Arousal</td>
<td>.018</td>
<td>.024</td>
<td>.048</td>
</tr>
<tr>
<td>Orgasm/resolution</td>
<td>.018</td>
<td>.024</td>
<td>.008</td>
</tr>
<tr>
<td>Traumatic stress</td>
<td>.001</td>
<td>.003</td>
<td>.023</td>
</tr>
<tr>
<td>Avoidance</td>
<td>.001</td>
<td>.011</td>
<td>.040*</td>
</tr>
<tr>
<td>Intrusion</td>
<td>.001</td>
<td>.001</td>
<td>.013</td>
</tr>
<tr>
<td>Situational distress</td>
<td>.006</td>
<td>.014</td>
<td>.021*</td>
</tr>
</tbody>
</table>

Note. Data are squared semipartial correlations.
* p < .05. ** p < .01.
(i.e., BCT) with radiotherapy produces comparable survival rates with that achieved with MRM for women with early stage disease (National Institutes of Health Consensus Conference, 1991). However, not all women are eligible for BCT because of the size/spread or location of the tumor and must receive mastectomy; still, others, when given the choice, elect mastectomy. Subsequently, women are faced with the question of reconstruction: proceed or not, and if so, when? The circumstance of having options or choices regarding cancer treatment is the exception. When it does occur, psychological and behavioral data can be critically important, as individuals are attempting to make the best choices to preserve, maintain, or, possibly, enhance their future quality of life. Thus, these data provide an important perspective on this period of acute distress—the days and weeks immediately following breast cancer surgery.

The first goal of the research was to examine the postoperative sexual and body change sequelae for women receiving MRMw/R in comparison with women receiving either BCT or MRM. Considering the sexual outcomes, the data suggest that the sexuality pattern for women receiving reconstructive surgery (MRMw/R) was one that was significantly different—with lower rates of activity and fewer signs of sexual responsiveness—than that for women receiving BCT and oftentimes lower than that for women receiving MRM without reconstruction. The behavioral disruption was particularly evident, as the level of current sexual activity for the women receiving reconstruction was more than 1 SD below the means of the other groups; also, over 40% of the women had not yet resumed intercourse in the month intervening from surgery to the assessment. This represents a noticeable behavioral change, as women reported that prior to their diagnosis they had intercourse, on average, of once per week. For the BCT and MRM groups, the finding of statistical equivalence between the groups for many of the sexual outcomes (e.g., current activity, orgasm/resolution, and satisfaction) is consistent with the meta-analysis findings of Moyer (1997); she reported extremely small (and nonsignificant) effect size (ES) differences between BCT and MRM groups, considering both randomized (ES = 0.06, ns) and nonrandomized (ES = 0.11, ns) investigations.

Comparison of the three groups on dimensions of body change stress reveals a consistent pattern of results for the three surgical groups, but one differing from the sexual outcomes previously discussed. Specifically, significantly higher levels of traumatic stress and situational distress regarding the breast changes were reported by all of the women treated with mastectomy (i.e., both MRM and MRMw/R) in contrast to the women treated with breast conservation (BCT). The pattern of less body change stress for women receiving BCT versus MRM is not surprising. Indeed, this is a robust effect, found in both randomized and nonrandomized investigations, regardless of whether the follow-up interval is short or long (i.e., less than or greater than 12 months following surgery; Moyer, 1997). Many fewer studies have included a sample of women who have received reconstruction. The finding of equivalent levels of distress for both the MRMw/R and MRM groups, however, is consistent with data from cross-sectional studies of heterogeneous samples of women assessed from 2 months to 2 years (Mock, 1993; Noguchi et al., 1993) following surgery, as well as for longer than 3 years since surgery (Margolis et al., 1990; Wellisch et al., 1989). Also, the data from the single study that randomized women to either BCT or MRMw/R (Schain, d'Angelo, Dunn, Lichter, & Pierce, 1994) found better outcomes for the women randomized to BCT and no apparent body image benefit for the women receiving reconstruction.

In summary, the first goal of the research—to characterize the outcomes for women receiving breast reconstruction (MRMw/R)—found that their immediate postsurgery sexual behavior and sexual responses are disrupted, and significantly more so than women receiving lesser surgery (BCT) or comparable breast surgery but no reconstruction (MRM). Moreover, the data suggest that the reconstruction achieves no reduction in body change stress, at least when assessed during the early postsurgery period, as the reconstruction group reported levels of stress equivalent to those of the women receiving MRM only and both mastectomy groups reported body change stress significantly higher (in some cases twice as high) as the responses of the women receiving BCT. We also provided descriptive data on the few women who requested bilateral mastectomy. Even though additional numbers of women are necessary to document the reliability of these estimates, the values are consistent with the hypothesis that more radical surgical therapy does, indeed, result in greater psychological and behavioral morbidity. These women report significant situational distress and avoidant behaviors (e.g., avoiding looking at her chest and turning away from her sexual partner).

The second goal of the research was to test the contribution of a psychological variable—sexual self-schema—to sexual and body change outcomes. Our intent was to make this a difficult test, as we were aware of the powerful role that prior levels of sexual behavior have in predicting sexual activity, as well as the important role that cancer treatments can have in affecting quality of life. Indeed, the latter factors are regarded as so important that individual differences are rarely considered, even in the case of Phase III cancer clinical trials (i.e., randomized trials comparing treatments thought to differ in efficacy), which are believed to produce, a priori, differential quality of life outcomes (e.g., Moinpour et al., 1998). In the regression analyses for both sexuality and body change stress, sexual self-schema consistently added significant incremental variance beyond that explained by the control variables, many of which were important contributors, as hypothesized. Thus, it would appear that women with more negative sexual self-views are more apt to engage in lower levels of sexual activity, have difficulties with their sexual responsiveness, and be vulnerable to heightened body change stress. The common characteristics of negative schema women—lower sexual arousability and greater sexual embarrassment and negativity—are likely contributors to make them vulnerable to coping poorly with the breast changes and disruption of sexual intercourse brought on with the cancer stress, hospitalization, and recovery. Moreover, this psychological difference among women plays an important role even when other powerful factors—such as the extent of the surgery—are considered.

The importance of sexual schema found here replicates our initial test of sexual self-schema predicting sexual outcomes for gynecologic cancer survivors (Andersen, Woods, & Copeland, 1997). The data are consistent with the construct conceptualization of the measure, and it is our recommendation that the total score of the measure be used. Even when individual factor scores are influential (in contrast to the total score) in the prediction of outcomes, their content and direction of effects are consistent with the psychometric strategies used in the construction of the scale and the provision of validity data for the measure (e.g., Andersen & Cyranowski, 1994; Cyranowski & Andersen, 1998). For exam-
ple, we have noted that “Factor 3 has a general inhibitory effect on behavior as well as positive sexual affect” (Andersen & Cryanowski, 1994, p. 1084). This is consistent with our findings that Factor 3 predicts avoidance of sexual activity and lack of sexual desire.

Considering the clinical utility of these results, one future use of the schema measure might be to test it as a screening measure in a model for the prediction of sexual morbidity (Andersen, 1994) to identify women at greatest risk for quality of life disruption in the domains of sexuality or body change following breast surgery. Indeed, in an era of shrinking resources for health care services of all types, preventive efforts that target psychosocial care to those in greatest need are important. For example, these data suggest that postmenopausal women receiving MRM (with or without reconstruction), and those with more negative sexual self-schemas, are at heightened risk for sexual disruption and body change stress. Importantly, clinical psychologists have several effective strategies to reduce sexual and body-related anxieties (see, e.g., Wincze & Corey, 1991) that have applicability to female cancer survivors and their partners (see also Andersen & Elliot, 1993).

This study offered a novel conceptualization of the emotional distress—and perhaps trauma—surrounding breast changes. As we noted, women’s reports of distress due to a changed “body image” (however defined) have been long-standing and robust, despite nebulous measurement strategies. Even though we found group differences here, measures of “satisfaction” with body parts have been inconsistent in their ability to document change following cancer treatments (e.g., Andersen & LeGrand, 1991; Langer, Prohaska, Schreiner-Frech, Ringler, & Kubista, 1991), suggesting that “satisfaction–dissatisfaction” scales or ratings of body parts may not be the most appropriate measurement strategies or conceptualization for the concerns of women undergoing significant breast changes. Indeed, women’s endorsements of avoidance behaviors and intrusive thoughts would suggest that the stress of this experience can at least mimic (if not be identical to) the psychological remnants of a traumatic stressor. As with many traumatic stressors, the occurrence of uncontrollable events (e.g., intrusive thoughts “popping into awareness”) likely heighten the levels of women’s general distress as well. Still, there may be important phenomenological differences between the traumatic body change stress of breast cancer and the psychological trauma of other stressors (e.g., rape or war). For example, the body change stressor for women treated for breast cancer remains (i.e., the chest is permanently changed) and other less tangible aspects (e.g., the fear of recurrence and death) remains to be faced each day. For now, the strategy of conceptualizing breast changes as a precipitant to significant stress-related responses (i.e., behavioral avoidance and intrusive thoughts) appears to produce useful data. In addition, this conceptualization and measurement strategy suggests directions for choosing psychological interventions (e.g., anxiety-reduction techniques for avoidance behaviors and cognitive–behavioral strategies for problematic thoughts) to treat women with clinical levels of body change stress.

Finally, we note particular methodologic aspects of this study. The sample was predominantly Caucasian, and so generalizability of the findings to other ethnic groups may be limited. The large, homogeneous sample and control of the timing of the assessment at a critical period were important design features, as we were able to differentiate psychological and behavioral sequelae for the three surgeries and test for individual differences in outcomes. Although an important strength was control over the timing of the assessment (i.e., the data document the sexual and body change stress in the early surgical recovery period), continued follow-up data are necessary to document the reliability of these changes for later follow-up. However, our longitudinal data with gynecologic cancer patients indicated that to the extent that sexual problems develop early in the recovery period, the majority of them do not resolve during the following year, and, in addition, some women who resume intercourse still develop sexual problems at a later time (Andersen, Anderson, & deProosse, 1989b). However, we will need to follow the present sample to determine if this is their scenario, too, or if their sexual activity returns to former levels and their body change stress declines.

To some, the difficult outcomes for the women receiving reconstruction may be surprising. However, consideration of the technical and clinical aspects of reconstruction may be informative (see Brown, 1991, for a more complete discussion of patient concerns). For example, reconstruction with an implant produces a breast “mound” without a breast nipple. Also, breast implants do not have the same tactile sensation, as the implanted breast can feel “hard” compared with one’s other breast. These, and related experiences, are the outcomes to which women undergoing reconstruction were adjusting at the time of our assessment. However, as a woman becomes more familiar with these qualities of the breast, there may be some reduction in stress. In addition, women with reconstruction do, indeed, experience what many report as the main benefits of reconstruction—greater ease in clothing style and convenience—and the escape from wearing a prosthesis. Whether or not these or other benefits occur and are of sufficient importance to allow women who underwent reconstruction to become less avoidant, more sexually responsive, and less vulnerable to intrusive, stressful thoughts remains to be discovered. What is clear, however, is that women at risk for such difficulties can be identified at the time of surgery, and effective sexual and cognitive–behavioral therapies exist to prevent or minimize the types of or magnitude of psychosocial and quality of life disruptions shown here. To the extent that clinical psychologists and other behavioral scientists can provide data to forecast quality of life outcomes, they will have provided a mechanism and pathway to prevent stress from the breast cancer experience.

References

Received February 4, 1999
Revision received November 23, 1999
Accepted December 6, 1999